445

Advances in Metabolomics Research in Environmental Stress Response in Plants

Gayen, D., Barua, P., Lande, N. V., Varshney, S., Sengupta, S., Chakraborty, S., & Chakraborty,

N., (2019). Dehydration-responsive alterations in the chloroplast proteome and cell

metabolomic profile of rice reveals key stress adaptation responses. Environ. Exper. Bot.,

160, 12–24.

Griesser, M., Weingart, G., Schoedl-Hummel, K., Neumann, N., Becker, M., Varmuza, K.,

Liebner, F., et al., (2015). Severe drought stress is affecting selected primary metabolites,

polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir).

Plant Physiol. Biochem., 88, 17–26.

Gupta, P., & De, B., (2017). Metabolomics analysis of rice responses to salinity stress revealed

elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signal

Behav., 12, e1335845.

Guy, C. L., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K., (2008). Metabolomics of

temperature stress. Physiol. Plantarum, 132, 220–235.

Han, S., & Micallef, S. A., (2016). Environmental metabolomics of the tomato plant surface

provides insights on Salmonella enterica colonization. Appl. Environ. Microbiol., 82,

3131–3142.

Hein, J. A., Sherrard, M. E., Manfredi, K. P., & Abebe, T., (2016). The fifth leaf and spike

organs of barley (Hordeum vulgare L.) display different physiological and metabolic

responses to drought stress. BMC Plant Biol., 16, 248.

Hildebrandt, T. M., Nesi, N. A., Araújo, W. L., & Braun, H. P., (2015). Amino acid catabolism

in plants. Mol. Plant., 8, 1563–1579.

Ibarra, A. A. G., Wrobel, K., Barrientos, E. Y., Escobosa, A. R. C., Corona, J. F. G., Donis, I.

E., & Wrobel, K., (2019). Impact of Cr (VI) on the oxidation of polyunsaturated fatty acids

in Helianthus annuus roots studied by metabolomics tools. Chemosphere, 220, 442–451.

Isayenkov, S. V., & Maathuis, F. J. M., (2019). Plant salinity stress: Many unanswered

questions remain. Front Plant Sci., 10, 80.

Jahangir, M., Abdel-Farid, I. B., Choi, Y. H., & Verpoorte, R., (2008). Metal ion-inducing

metabolite accumulation in Brassica rapa. J. Plant Physiol., 165, 1429–1437.

Jarup, L., (2003). Hazards of heavy metal contamination. Br. Med. Bull., 68, 167–182.

Jian, H., Xie, L., Wang, Y., Cao, Y., Wan, M., Lv, D., Li, J., et al., (2020). Characterization

of cold stress responses in different rapeseed ecotypes based on metabolomics and

transcriptomics analyses. PeerJ, 8, e8704.

Jorge, T. F., Rodrigues, J. A., Caldana, C., Schmidt, R., Van, D. J. T., Thomas-Oates, J., &

António, C., (2016). Mass spectrometry-based plant metabolomics: Metabolite responses

to abiotic stress. Mass Spectrom. Rev., 35, 620–649.

Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-

Pareek, S. L., (2016). Transcription factors and plants response to drought stress: Current

understanding and future directions. Front Plant Sci., 7, 1029.

Kang, Z., Babar, M. A., Khan, N., Guo, J., Khan, J., Islam, S., Shrestha, S., & Shahi, D.,

(2019). Comparative metabolomics profiling in the roots and leaves in contrasting genotypes

reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS

One, 14, e0213502.

Kavamura, V. N., & Esposito, E., (2010). Biotechnological strategies applied to the

decontamination of soils polluted with heavy metal. Biotechnol. Adv., 28, 61–69.

Kerkeb, L., & Kramer, U., (2003). The role of free histidine in xylem loading of nickel in

Alyssum lesbiacum and Brassica juncea. Plant Physiol., 131, 716–724.